Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(13): 10225-10233, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497307

RESUMO

This study delves into the pH-dependent effects on the excited-state behavior of crocin, a hydrophilic carotenoid with diverse functions in biological systems. Steady-state spectroscopy demonstrates notable changes in absorption and fluorescence spectra, characterized by a pH-dependent blue shift and altered resolution of vibrational bands. Transient absorption spectra further elucidate these effects, highlighting a significant blue shift in the S1-Sn peak with increasing pH. Detailed kinetic analysis shows the pH-dependent dynamics of crocin's excited states. At pH 11, a shortening of effective conjugation is observed, resulting in a prolonged S1/ICT lifetime. Conversely, at pH 9, our data suggest a more complex scenario, suggesting the presence of two distinct crocin species with different relaxation patterns. This implies structural alterations within the crocin molecule, potentially linked to the deprotonation of hydroxyl groups in crocin and/or saponification at high pH.


Assuntos
Carotenoides , Cinética , Análise Espectral , Carotenoides/química , Concentração de Íons de Hidrogênio
2.
Biochim Biophys Acta Bioenerg ; 1864(2): 148935, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379269

RESUMO

Detailed information on the photo-generated triplet states of diatom and haptophyte Fucoxanthin Chlorophyll-binding Proteins (FCPs and E-FCPs, respectively) have been obtained from a combined spectroscopic investigation involving Transient Absorption and Time-Resolved Electron Paramagnetic Resonance. Pennate diatom Phaeodactylum tricornutum FCP shows identical photoprotective Triplet-Triplet Energy Transfer (TTET) pathways to the previously investigated centric diatom Cyclotella meneghiniana FCP, with the same two chlorophyll a-fucoxanthin pairs that involve the fucoxanthins in sites Fx301 and Fx302 contributing to TTET in both diatom groups. In the case of the haptophyte Emilianina huxleyi E-FCP, only one of the two chlorophyll a-fucoxanthins pairs observed in diatoms, the one involving chlorophyll a409 and Fx301, has been shown to be active in TTET. Furthermore, despite the marked change in the pigment content of E-FCP with growth light intensity, the TTET pathway is not affected. Thus, our comparative investigation of FCPs revealed a photoprotective TTET pathway shared within these classes involving the fucoxanthin in site Fx301, a site exposed to the exterior of the antenna monomer that has no equivalent in Light-Harvesting Complexes from the green lineage.


Assuntos
Proteínas de Ligação à Clorofila , Diatomáceas , Proteínas de Ligação à Clorofila/química , Clorofila A/metabolismo , Clorofila/metabolismo , Diatomáceas/química , Espectroscopia de Ressonância de Spin Eletrônica , Transferência de Energia
3.
J Phys Chem A ; 126(6): 813-824, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35114087

RESUMO

Carotenoids are conjugated linear molecules built from the repetition of terpene units, which display a large structural diversity in nature. They may, in particular, contain several types of side or end groups, which tune their functional properties, such as absorption position and photochemistry. We report here a detailed experimental study of the absorption and vibrational properties of allene-containing carotenoids, together with an extensive modeling of these experimental data. Our calculations can satisfactorily explain the electronic properties of vaucheriaxanthin, where the allene group introduces the equivalent of one C═C double bond into the conjugated C═C chain. The position of the electronic absorption of fucoxanthin and butanoyloxyfucoxanthin requires long-range corrections to be found correctly on the red side of that of vaucheriaxanthin; however, these corrections tend to overestimate the effect of the conjugated and nonconjugated C═O groups in these molecules. We show that the resonance Raman spectra of these carotenoids are largely perturbed by the presence of the allene group, with the two major Raman contributions split into two components. These perturbations are satisfactorily explained by modeling, through a gain in the Raman intensity of the C═C antisymmetric stretching mode, induced by the presence of the allene group in the carotenoid C═C chain.


Assuntos
Alcadienos , Carotenoides , Carotenoides/química , Eletrônica , Análise Espectral Raman
4.
Chemphyschem ; 22(5): 471-480, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33373476

RESUMO

Carotenoids are molecules with rich photophysics that are in many biological systems involved in photoprotection. Yet, their response to excess energy excitation is only scarcely studied. Here we have explored excited state properties of three keto-carotenoids, echinenone, canthaxanthin and rhodoxanthin after excess energy excitation to a singlet state absorbing in UV. Though the basic spectral features and kinetics of S2 , hot S1 , relaxed S1 states remain unchanged upon UV excitation, the clear increase of the S* signal is observed after excess energy excitation, associated with increased S* lifetime. A multiple origin of the S* signal, originating either from specific conformations in the S1 state or from a non-equilibrated ground state, is confirmed in this work. We propose that the increased amount of energy stored in molecular vibrations, induced by the UV excitation, is the reason for the enhanced S* signal observed after UV excitation. Our data also suggest that a fraction of the UV excited state population may proceed through a non-sequential pathway, bypassing the S2 state.

5.
Photochem Photobiol Sci ; 19(4): 495-503, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32236233

RESUMO

The keto-carotenoid deinoxanthin, which occurs in the UV-resistant bacterium Deinococcus radiodurans, has been investigated by ultrafast time-resolved spectroscopy techniques. We have explored the excited-state properties of deinoxanthin in solution and bound to the S-layer Deinoxanthin Binding Complex (SDBC), a protein complex important for UV resistance and thermostability of the organism. Binding of deinoxanthin to SDBC shifts the absorption spectrum to longer wavelengths, but excited-state dynamics remain unaffected. The lifetime of the lowest excited state (S1) of isolated deinoxanthin in methanol is 2.1 ps. When bound to SDBC, the S1 lifetime is 2.4 ps, indicating essentially no alteration of the effective conjugation length upon binding. Moreover, our data show that the conformational disorder in both ground and excited states is the same for deinoxanthin in methanol and bound to SDBC. Our results thus suggest a rather loosely bound carotenoid in SDBC, making it very distinct from other carotenoid-binding proteins such as Orange Carotenoid Protein (OCP) or crustacyanin, both of which significantly restrain the carotenoid at the binding site. Three deinoxanthin analogs were found to bind the SDBC, suggesting a non-selective binding site of deinoxanthin in SDBC.


Assuntos
Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Deinococcus/química , Proteínas de Bactérias/química , Sítios de Ligação , Carotenoides/química , Deinococcus/metabolismo , Estrutura Molecular , Processos Fotoquímicos
6.
J Phys Chem A ; 124(14): 2792-2801, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32163283

RESUMO

Calculating the spectroscopic properties of complex conjugated organic molecules in their relaxed state is far from simple. An additional complexity arises for flexible molecules in solution, where the rotational energy barriers are low enough so that nonminimum conformations may become dynamically populated. These metastable conformations quickly relax during the minimization procedures preliminary to density functional theory calculations, and so accounting for their contribution to the experimentally observed properties is problematic. We describe a strategy for stabilizing these nonminimum conformations in silico, allowing their properties to be calculated. Diadinoxanthin and alloxanthin present atypical vibrational properties in solution, indicating the presence of several conformations. Performing energy calculations in vacuo and polarizable continuum model calculations in different solvents, we found three different conformations with values for the δ dihedral angle of the end ring ca. 0, 180, and 90° with respect to the plane of the conjugated chain. The latter conformation, a nonglobal minimum, is not stable during the minimization necessary for modeling its spectroscopic properties. To circumvent this classical problem, we used a Car-Parinello MD supermolecular approach, in which diadinoxanthin was solvated by water molecules so that metastable conformations were stabilized by hydrogen-bonding interactions. We progressively removed the number of solvating waters to find the minimum required for this stabilization. This strategy represents the first modeling of a carotenoid in a distorted conformation and provides an accurate interpretation of the experimental data.

7.
Photosynth Res ; 144(2): 127-135, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31802367

RESUMO

We used ultrafast transient absorption spectroscopy to study excited-state dynamics of two keto-carotenoids, siphonaxanthin and siphonein. These two carotenoids differ in the presence of dodecanoyl-oxy group in siphonein, which is attached to the C19 carbon on the same side of the molecule as the conjugated keto group. We show that this dodecanoyl-oxy group, though not in conjugation, is still capable of modifying excited state properties. While spectroscopic properties of siphonein and siphonaxanthin are nearly identical in a non-polar solvent, they become markedly different in polar solvents. In a polar solvent, siphonein, having the dodecanoyl-oxy moiety, exhibits less pronounced vibrational bands in the absorption spectrum and has significantly enhanced characteristic features of an intramolecular charge-transfer (ICT) state in transient absorption spectra compared to siphonaxanthin. The presence of the dodecanoyl-oxy moiety also alters the lifetimes of the S1/ICT state. For siphonaxanthin, the lifetimes are 60, 20, and 14 ps in n-hexane, acetonitrile, and methanol, whereas for siphonein these lifetimes yield 60, 11, and 10 ps. Thus, we show that even a non-conjugated functional group can affect the charge-transfer character of the S1/ICT state. By comparison with fucoxanthin acyl-oxy derivatives, we show that position of the acyl-oxy group in respect to the conjugated keto group is the key feature determining whether the polarity-dependent behavior is enhanced or suppressed.


Assuntos
Carotenoides/química , Xantofilas/química , Acetonitrilas/química , Hexanos/química , Ligação de Hidrogênio , Estrutura Molecular , Solventes/química , Espectroscopia por Absorção de Raios X/instrumentação , Espectroscopia por Absorção de Raios X/métodos
8.
Photosynth Res ; 142(2): 137-151, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31375979

RESUMO

Survival of phototrophic organisms depends on their ability to collect and convert enough light energy to support their metabolism. Phototrophs can extend their absorption cross section by using diverse pigments and by tuning the properties of these pigments via pigment-pigment and pigment-protein interaction. It is well known that some cyanobacteria can grow in heavily shaded habitats by utilizing far-red light harvested with far-red-absorbing chlorophylls d and f. We describe a red-shifted light-harvesting system based on chlorophyll a from a freshwater eustigmatophyte alga Trachydiscus minutus (Eustigmatophyceae, Goniochloridales). A comprehensive characterization of the photosynthetic apparatus of T. minutus is presented. We show that thylakoid membranes of T. minutus contain light-harvesting complexes of several sizes differing in the relative amount of far-red chlorophyll a forms absorbing around 700 nm. The pigment arrangement of the major red-shifted light-harvesting complex is similar to that of the red-shifted antenna of a marine alveolate alga Chromera velia. Evolutionary aspects of the algal far-red light-harvesting complexes are discussed. The presence of these antennas in eustigmatophyte algae opens up new ways to modify organisms of this promising group for effective use of far-red light in mass cultures.


Assuntos
Água Doce , Complexos de Proteínas Captadores de Luz/metabolismo , Luz , Estramenópilas/metabolismo , Estramenópilas/efeitos da radiação , Diurona , Proteínas de Membrana/metabolismo , Pigmentos Biológicos/metabolismo , Espectrometria de Fluorescência , Temperatura , Tilacoides/metabolismo
9.
Faraday Discuss ; 216(0): 460-475, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012452

RESUMO

The fucoxanthin-chlorophyll a protein from Emiliania huxleyi (E-FCP) is a member of the LHC family of light-harvesting proteins. It has a rather unusual pigment composition as its binds more Chl-c than Chl-a, and 19'-hexanoyloxyfucoxanthin (hFx) as the main carotenoid instead of fucoxanthin (Fx) typically found in various FCP complexes. The presence of a hexanoyloxy tail in hFx suppresses the charge transfer character of the S1/ICT state resulting in almost no effect of polarity on the excited state dynamics of hFx, strongly contrasting with the excited-state properties of Fx. Here we report on the dynamics of the energy transfer between hFx and Chl in E-FCP, and we compare it with Fx-Chl energy transfer in the FCP complex from Phaeodactylum tricornutum. In both complexes, the excited hFx (Fx) transfers energy from the S2 state with a sub-100 fs time constant and no effect of the hexanoyloxy tail on the efficiency of the S2 route was found. The energy transfer via the S1/ICT state has in E-FCP two channels characterized by 1.5 and 11 ps time constants, while for FCP these two channels operate with time constants of 0.8 and 4.5 ps. Thus, minimizing the charge transfer character of S1/ICT in hFx results in about twice slower energy transfer via the S1/ICT state, underlining the importance of the ICT state in facilitating carotenoid-Chl energy transfer in systems utilizing keto carotenoids as energy donors.


Assuntos
Carotenoides/química , Clorofila/química , Xantofilas/química , Sítios de Ligação , Transferência de Energia , Haptófitas/química , Conformação Molecular
10.
Biochim Biophys Acta Bioenerg ; 1860(2): 111-120, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414929

RESUMO

Photosynthetic eukaryotes whose cells harbor plastids originating from secondary endosymbiosis of a red alga include species of major ecological and economic importance. Since utilization of solar energy relies on the efficient light-harvesting, one of the critical factors for the success of the red lineage in a range of environments is to be found in the adaptability of the light-harvesting machinery, formed by the proteins of the light-harvesting complex (LHC) family. A number of species are known to employ mainly a unique class of LHC containing red-shifted chlorophyll a (Chl a) forms absorbing above 690 nm. This appears to be an adaptation to shaded habitats. Here we present a detailed investigation of excitation energy flow in the red-shifted light-harvesting antenna of eustigmatophyte Trachydiscus minutus using time-resolved fluorescence and ultrafast transient absorption measurements. The main carotenoid in the complex is violaxanthin, hence this LHC is labeled the red-violaxanthin-Chl a protein, rVCP. Both the carotenoid-to-Chl a energy transfer and excitation dynamics within the Chl a manifold were studied and compared to the related antenna complex, VCP, that lacks the red-Chl a. Two spectrally defined carotenoid pools were identified in the red antenna, contributing to energy transfer to Chl a, mostly via S2 and hot S1 states. Also, Chl a triplet quenching by carotenoids is documented. Two separate pools of red-shifted Chl a were resolved, one is likely formed by excitonically coupled Chl a molecules. The structural implications of these observations are discussed.


Assuntos
Clorofila A , Transferência de Energia/fisiologia , Complexos de Proteínas Captadores de Luz/química , Estramenópilas/fisiologia , Clorófitas/fisiologia , Plastídeos , Rodófitas/fisiologia , Espectrometria de Fluorescência/métodos , Xantofilas
11.
Photosynth Res ; 138(2): 139-148, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30006883

RESUMO

The soil chromophyte alga Xanthonema (X.) debile contains only non-carbonyl carotenoids and Chl-a. X. debile has an antenna system denoted Xanthophyte light-harvesting complex (XLH) that contains the carotenoids diadinoxanthin, heteroxanthin, and vaucheriaxanthin. The XLH pigment stoichiometry was calculated by chromatographic techniques and the pigment-binding structure studied by resonance Raman spectroscopy. The pigment ratio obtained by HPLC was found to be close to 8:1:2:1 Chl-a:heteroxanthin:diadinoxanthin:vaucheriaxanthin. The resonance Raman spectra suggest the presence of 8-10 Chl-a, all of which are 5-coordinated to the central Mg, with 1-3 Chl-a possessing a macrocycle distorted from the relaxed conformation. The three populations of carotenoids are in the all-trans configuration. Vaucheriaxanthin absorbs around 500-530 nm, diadinoxanthin at 494 nm and heteroxanthin at 487 nm at 4.5 K. The effective conjugation length of heteroxanthin and diadinoxanthin has been determined as 9.4 in both cases; the environment polarizability of the heteroxanthin and diadinoxanthin binding pockets is 0.270 and 0.305, respectively.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Estramenópilas/química , Carotenoides/química , Cromatografia Líquida de Alta Pressão , Conformação Proteica , Análise Espectral Raman
12.
Biochim Biophys Acta Bioenerg ; 1859(5): 357-365, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29499185

RESUMO

We have applied femtosecond transient absorption spectroscopy in pump-probe and pump-dump-probe regimes to study energy transfer between fucoxanthin and Chl a in fucoxanthin-Chl a complex from the pennate diatom Phaeodactylum tricornutum. Experiments were carried out at room temperature and 77 K to reveal temperature dependence of energy transfer. At both temperatures, the ultrafast (<100 fs) energy transfer channel from the fucoxanthin S2 state is active and is complemented by the second pathway via the combined S1/ICT state. The S1/ICT-Chl a pathway has two channels, the fast one characterized by sub-picosecond energy transfer, and slow having time constants of 4.5 ps at room temperature and 6.6 ps at 77 K. The overall energy transfer via the S1/ICT is faster at 77 K, because the fast component gains amplitude upon lowering the temperature. The pump-dump-probe regime, with the dump pulse centered in the spectral region of ICT stimulated emission at 950 nm and applied at 2 ps after excitation, proved that the S1 and ICT states of fucoxanthin in FCP are individual, yet coupled entities. Analysis of the pump-dump-probe data suggested that the main energy donor in the slow S1/ICT-Chl a route is the S1 part of the S1/ICT potential surface.


Assuntos
Clorofila/química , Diatomáceas/química , Espectrofotometria Atômica , Xantofilas/química , Clorofila A
13.
J Phys Chem B ; 122(11): 2922-2930, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29469573

RESUMO

We used ultrafast transient absorption spectroscopy to study excited-state dynamics of the keto-carotenoid fucoxanthin (Fx) and its two derivatives: 19'-butanoyloxyfucoxanthin (bFx) and 19'-hexanoyloxyfucoxanthin (hFx). These derivatives occur in some light-harvesting systems of photosynthetic microorganisms, and their presence is typically related to stress conditions. Even though the hexanoyl (butanoyl) moiety is not a part of the conjugated system of hFx (bFx), their absorption spectra in polar solvents exhibit more pronounced vibrational bands of the S2 state than for Fx. The effect of the nonconjugated acyloxy moiety is further observed in transient absorption spectra, which for Fx exhibit characteristic features of an intramolecular charge transfer (ICT) state in all polar solvents. For bFx and hFx, however, much weaker ICT features are detected in methanol, and the spectral markers of the ICT state disappear completely in polar, but aprotic acetonitrile. The presence of the acyloxy moiety also alters the lifetimes of the S1/ICT state. For Fx, the lifetimes are 60, 30, and 20 ps in n-hexane, acetonitrile, and methanol, whereas for bFx and hFx, these lifetimes yield 60, 60, and 40 ps, respectively. Testing the S1/ICT state lifetimes of hFx in other solvents revealed that some ICT features can be induced only in polar, protic solvents (methanol, ethanol, and ethylene glycol). Thus, bFx and hFx represent a rather rare example of a system in which a nonconjugated functional group significantly alters excited-state dynamics. By comparison with other carotenoids, we show that a keto group at the acyloxy tail, even though it is not in conjugation, affects the electron distribution along the conjugated backbone, resulting in the observed decrease of the ICT character of the S1/ICT state of bFx and hFx.


Assuntos
Simulação de Dinâmica Molecular , Xantofilas/química , Conformação Molecular
14.
Photosynth Res ; 135(1-3): 213-225, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28669083

RESUMO

We have used time-resolved absorption and fluorescence spectroscopy with nanosecond resolution to study triplet energy transfer from chlorophylls to carotenoids in a protective process that prevents the formation of reactive singlet oxygen. The light-harvesting complexes studied were isolated from Chromera velia, belonging to a group Alveolata, and Xanthonema debile and Nannochloropsis oceanica, both from Stramenopiles. All three light-harvesting complexes are related to fucoxanthin-chlorophyll protein, but contain only chlorophyll a and no chlorophyll c. In addition, they differ in the carotenoid content. This composition of the complexes allowed us to study the quenching of chlorophyll a triplet states by different carotenoids in a comparable environment. The triplet states of chlorophylls bound to the light-harvesting complexes were quenched by carotenoids with an efficiency close to 100%. Carotenoid triplet states were observed to rise with a ~5 ns lifetime and were spectrally and kinetically homogeneous. The triplet states were formed predominantly on the red-most chlorophylls and were quenched by carotenoids which were further identified or at least spectrally characterized.


Assuntos
Carotenoides/metabolismo , Proteínas de Ligação à Clorofila/metabolismo , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Processos Fotoquímicos , Estramenópilas/metabolismo , Anaerobiose , Cinética , Espectrometria de Fluorescência , Fatores de Tempo
15.
Photosynth Res ; 135(1-3): 33-43, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28528494

RESUMO

RC-LH1-PufX complexes from a genetically modified strain of Rhodobacter sphaeroides that accumulates carotenoids with very long conjugation were studied by ultrafast transient absorption spectroscopy. The complexes predominantly bind the carotenoid diketospirilloxanthin, constituting about 75% of the total carotenoids, which has 13 conjugated C=C bonds, and the conjugation is further extended to two terminal keto groups. Excitation of diketospirilloxanthin in the RC-LH1-PufX complex demonstrates fully functional energy transfer from diketospirilloxanthin to BChl a in the LH1 antenna. As for other purple bacterial LH complexes having carotenoids with long conjugation, the main energy transfer route is via the S2-Qx pathway. However, in contrast to LH2 complexes binding diketospirilloxanthin, in RC-LH1-PufX we observe an additional, minor energy transfer pathway associated with the S1 state of diketospirilloxanthin. By comparing the spectral properties of the S1 state of diketospirilloxanthin in solution, in LH2, and in RC-LH1-PufX, we propose that the carotenoid-binding site in RC-LH1-PufX activates the ICT state of diketospirilloxanthin, resulting in the opening of a minor S1/ICT-mediated energy transfer channel.


Assuntos
Bacterioclorofilas/metabolismo , Carotenoides/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo , Rhodobacter sphaeroides/metabolismo , Cromatografia Líquida de Alta Pressão , Cinética , Processamento de Sinais Assistido por Computador , Espectrometria de Fluorescência , Xantofilas/metabolismo
16.
Sci Rep ; 7(1): 11976, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28931902

RESUMO

Diatoms greatly contribute to carbon fixation and thus strongly influence the global biogeochemical balance. Capable of chromatic acclimation (CA) to unfavourable light conditions, diatoms often dominate benthic ecosystems in addition to their planktonic lifestyle. Although CA has been studied at the molecular level, our understanding of this phenomenon remains incomplete. Here we provide new data to better explain the acclimation-associated changes under red-enhanced ambient light (RL) in diatom Phaeodactylum tricornutum, known to express a red-shifted antenna complex (F710). The complex was found to be an oligomer of a single polypeptide, Lhcf15. The steady-state spectroscopic properties of the oligomer were also studied. The oligomeric assembly of the Lhcf15 subunits is required for the complex to exhibit a red-shifted absorption. The presence of the red antenna in RL culture coincides with the development of a rounded phenotype of the diatom cell. A model summarizing the modulation of the photosynthetic apparatus during the acclimation response to light of different spectral quality is proposed. Our study suggests that toggling between alternative organizations of photosynthetic apparatus and distinct cell morphologies underlies the remarkable acclimation capacity of diatoms.


Assuntos
Organismos Aquáticos/fisiologia , Organismos Aquáticos/efeitos da radiação , Diatomáceas/fisiologia , Diatomáceas/efeitos da radiação , Complexos de Proteínas Captadores de Luz/metabolismo , Fenótipo , Adaptação Fisiológica , Multimerização Proteica , Análise Espectral
17.
Photosynth Res ; 134(1): 51-58, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28677008

RESUMO

Resonance Raman spectroscopy was used to evaluate pigment-binding site properties in the violaxanthin-chlorophyll-a-binding protein (VCP) from Nannochloropsis oceanica. The pigments bound to this antenna protein are chlorophyll-a, violaxanthin, and vaucheriaxanthin. The molecular structures of bound Chl-a molecules are discussed with respect to those of the plant antenna proteins LHCII and CP29, the crystal structures of which are known. We show that three populations of carotenoid molecules are bound by VCP, each of which is in an all-trans configuration. We assign the lower-energy absorption transition of each of these as follows. One violaxanthin population absorbs at 485 nm, while the second population is red-shifted and absorbs at 503 nm. The vaucheriaxanthin population absorbs at 525 nm, a position red-shifted by 2138 cm-1 as compared to isolated vaucheriaxanthin in n-hexane. The red-shifted violaxanthin is slightly less planar than the blue-absorbing one, as observed for the two central luteins in LHCII, and we suggest that these violaxanthins occupy the two equivalent binding sites in VCP at the centre of the cross-brace. The presence of a highly red-shifted vaucheriaxanthin in VCP is reminiscent of the situation of FCP, in which (even more) highly red-shifted populations of fucoxanthin are present. Tuning carotenoids to absorb in the green-yellow region of the visible spectrum appears to be a common evolutionary response to competition with other photosynthetic species in the aquatic environment.


Assuntos
Carotenoides/química , Proteínas de Transporte/química , Clorofila/química , Complexos de Proteínas Captadores de Luz/química , Análise Espectral Raman , Xantofilas/química
18.
J Phys Chem B ; 121(17): 4438-4447, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28382818

RESUMO

Ultrafast transient absorption spectroscopy and single-wavelength anisotropy measurements were used to study the effect of isomerization on the excited-state properties of fucoxanthin in polar and nonpolar solvents. The excitation wavelengths were 477 nm for all-trans-fucoxanthin, and 333 and 477 nm for cis-fucoxanthin. All transient absorption spectra of the fucoxanthin isomers in polar solvents show intramolecular charge transfer (ICT) state features, typical for carbonyl carotenoids. Global analysis of the data requires an additional fitting component, originated from the presence of blue and red forms of fucoxanthin in a polar protic solvent. Here we demonstrate that the ICT state decays faster than the S1 state, due to the significant contribution of the red form to the ICT state dynamics. The isomerization does not affect the S1 lifetime, but induces a larger difference between the S1- and ICT-state lifetimes in cis-fucoxanthin, which is likely caused by alterations of ICT coupling to either the S1 or S0 states; the S*-state signal is more pronounced for cis-isomers in a nonpolar solvent.


Assuntos
Teoria Quântica , Xantofilas/química , Estrutura Molecular , Estereoisomerismo
19.
Photosynth Res ; 131(1): 65-77, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27485797

RESUMO

Eustigmatophyte algae represent an interesting model system for the study of the regulation of the excitation energy flow due to their use of violaxanthin both as a major light-harvesting pigment and as the basis of xanthophyll cycle. Fluorescence induction kinetics was studied in an oleaginous marine alga Nannochloropsis oceanica. Nonphotochemical fluorescence quenching was analyzed in detail with respect to the state of the cellular xanthophyll pool. Two components of nonphotochemical fluorescence quenching (NPQ), both dependent on the presence of zeaxanthin, were clearly resolved, denoted as slow and fast NPQ based on kinetics of their formation. The slow component was shown to be in direct proportion to the amount of zeaxanthin, while the fast NPQ component was transiently induced in the presence of membrane potential on subsecond timescales. The applicability of these observations to other eustigmatophyte species is demonstrated by measurements of other representatives of this algal group, both marine and freshwater.


Assuntos
Alga Marinha/química , Fluorescência , Fotossíntese
20.
Photosynth Res ; 131(3): 255-266, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27734239

RESUMO

Photosystem I (PSI) is a multi-subunit integral pigment-protein complex that performs light-driven electron transfer from plastocyanin to ferredoxin in the thylakoid membrane of oxygenic photoautotrophs. In order to achieve the optimal photosynthetic performance under ambient irradiance, the absorption cross section of PSI is extended by means of peripheral antenna complexes. In eukaryotes, this role is played mostly by the pigment-protein complexes of the LHC family. The structure of the PSI-antenna supercomplexes has been relatively well understood in organisms harboring the primary plastid: red algae, green algae and plants. The secondary endosymbiotic algae, despite their major ecological importance, have so far received less attention. Here we report a detailed structural analysis of the antenna-PSI association in the stramenopile alga Nannochloropsis oceanica (Eustigmatophyceae). Several types of PSI-antenna assemblies are identified allowing for identification of antenna docking sites on the PSI core. Instances of departure of the stramenopile system from the red algal model of PSI-Lhcr structure are recorded, and evolutionary implications of these observations are discussed.


Assuntos
Complexo de Proteína do Fotossistema I/metabolismo , Plastídeos/metabolismo , Rodófitas/metabolismo , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...